
A Multi-Start Iterated Local Search
Algorithm for the Bottleneck Travelling

Salesman Problem

A Project Report submitted in partial fulfilment of the requirements

for the degree of B.Tech

by

Viknesh Rajaramon

(Roll No: COE18B060)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY,

DESIGN AND MANUFACTURING, KANCHEEPURAM

May 2022



Certificate

I, Viknesh Rajaramon, with Roll No: COE18B060 hereby declare that the material

presented in the Project Report titled A Multi-Start Iterated Local Search

Algorithm for the Bottleneck Travelling Salesman Problem represents original

work carried out by me in the Department of Computer Science and Engineering

at the Indian Institute of Information Technology, Design and Manufacturing,

Kancheepuram during the year 2022. With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly

indicated and referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic

misconduct.

Date: 10 May 2022 Student’s Signature

In my capacity as supervisor of the above-mentioned work, I certify that the work presented

in this Report is carried out under my supervision, and is worthy of consideration for the

requirements of project work during the period January 2022 to May 2022.

Advisor’s Name: Dr. Venkatesh Pandiri Advisor’s Signature

i



Abstract

The bottleneck travelling salesman problem (BTSP) is a variation of the well-known

travelling salesman problem (TSP) in which the goal is to identify a Hamiltonian circuit

on a graph with lowest maximum edge cost among its constituent edges. The BTSP

finds application in the area of workforce planning and in minimizing make-span in a

two-machine flow shop with no-wait-in-process. A multi-start iterated local search

method for the BTSP is proposed in this paper. As part of this approach, two local

search algorithms have been developed - one based on insertion and the other based on

modified 2-opt moves. Performance of the suggested approach is investigated by using

the standard TSPLIB library’s benchmark instances. The suggested approach’s

effectiveness is demonstrated through computational results and their interpretation.
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Chapter 1

Introduction

1.1 Introduction

The Bottleneck Travelling Salesman Problem (BTSP) is a version of the Travelling

Salesman Problem (TSP). The TSP searches for a Hamiltonian cycle of lowest length

across a set of nodes (also called cities). Reducing the overall distance travelled by the

salesman is the goal of the TSP. BTSP, like TSP, is looking for a Hamiltonian circuit. Of

contrast to the TSP, the aim in BTSP is to decrease the edge length that has the longest

length of all the edges in the Hamiltonian circuit. The difference between the TSP and

the BTSP on a TSPLIB instance bays29 having 29 nodes, is shown in Figure 1.1. We

can clearly see that the BTSP tries to minimize the maximum distance by making any

two consecutive nodes as close as possible whereas the TSP tries to minimize the overall

distance travelled by the salesman. The Maximum Scatter Travelling Salesman Problem

(MSTSP) is a problem similar to the BTSP where the aim is to maximise the shortest

edge length in a Hamiltonian cycle.

1.2 Problem Statement

Given an undirected edge-weighted complete graph G = (V (G), E(G)), where V (G) =

{1, 2, 3, . . . , n} is the set of nodes and E(G) = {(u, v)|u, v ∈ V (G)}. Define a binary

1



Chapter 1. Introduction 2

(a) Solution of TSP (b) Solution of BTSP

Figure 1.1: Difference between TSP and BTSP using instance bays29

variable xuv as follows:

xuv =


1, path exists between nodes u and v

0, otherwise

(1.1)

Take duv > 0 to be the distance between node u and node v. Then the BTSP can be

represented as the following mathematical model:

Minimize max
(u,v)∈E(G)

duvxuv (1.2)

subject to: ∑
(u,v)∈E(G)

xuv =
∑

(v,w)∈E(G)

xvw = 1, ∀v ∈ V (G), (1.3)

∑
u∈S

∑
v∈S

xuv ≤ |S| − 1, ∀S ⊂ V (G) (1.4)

• The objective function for the BTSP is given by Equation (1.2) and it minimizes the

maximum edge cost.

• Equation (1.3) denotes the in-degree and out-degree constraints as every node must

have exactly one incoming edge and one outgoing edge.

• Equation (1.4) ensures that no proper subset S can form a sub-tour, so that the

solution returned is a single tour and not a union of smaller tours.



Chapter 2

Literature Survey

2.1 Studies on Bottleneck TSP

This section consists of the details of various research by various authors relating to our

study of interest and discuss them.

In 1964, Gilmore and Gormory [1–7] presented a special instance of the BTSP. In 1971,

Gabovic et al. [8] introduced the general BTSP. The BTSP finds application in the area

of workforce planning [6] and in minimizing make-span in a two-machine flow shop with

no-wait-in-process [9]. The Maximum Scatter Travelling Salesman Problem (MSTSP) is

a problem that is similar to the BTSP in that it aims to maximise the least edge cost in

a Hamiltonian circuit.

The BTSP is an NP-hard problem, and is hence very difficult to solve by conventional

methods. All the known exact algorithms for solving the BTSP are enumerative in nature.

Many studies proposed approximate algorithms to solve the BTSP. there doesn’t exist a

polynomial time ϵ-approximation algorithm for any ϵ > 0 [10–12]. However, polynomial

time algorithms for various special cases exist with guaranteed performance ratios. For

example, when the τ -triangle inequality (i.e., cij ≤ τ(cik + cjk) ∀i, j, k ∈ V and τ ≥ 1
2) is

satisfied by the edge cost, a 2τ -approximate solution may be achieved in polynomial time

[3], and this appears to be the best performance bound for this problem. Even if the edge

costs are satisfied by the τ -triangle inequality for τ > 1
2 [3], there is no 2τ−ϵ approximation

3
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procedure for the BTSP unless P = NP. However, no meta-heuristic approach has been

developed for solving this problem so far.

A branch and bound method was presented by Garfinkel and Gilbert [13]. They presented

computational findings on random problems with nodes ranging from 10 to 100 using a

constructive heuristic. In many situations, the algorithm yielded optimal results. The

solution quality looked to be deteriorating as the instance size increased from 10 to 100 in

one set of problems.

A basic Binary Search based Threshold (BST) method was proposed by Ramakrishna et

al. [14] using the 2-max bound [5] as a beginning lower bound and the objective function

value of the closest neighbour heuristic as an upper bound. From this, we can obtain the

2-max bound. The optimality of some instances was not proved due to the poor 2-max

lower bound.

A hybrid sequential constructive sampling (HSCS) algorithm was implemented by

Ahmed [15] which incorporates a combined mutation operator to the sequential

constructive sampling algorithm. To diversify the population of chromosomes in the

Genetic Algorithm (GA), mutation operation [16] was used. The insertion operator (pick

a node and insert it in a random place), inversion operator (select two places along the

length of chromosome and reverse the sub-tour between those places), and reciprocal

exchange operator (select two nodes randomly and swap them) are the most often used

mutation operators for TSP.

Ahmed [17] employs a basic genetic Algorithm (GA) with sequential constructive crossover

[15] to get a heuristic solution. 2-opt search and an additional local search method was

incorporated into the standard GA to enhance the results. The GA starts with a set

of chromosomes termed the starting population, and then applies three operations to

get a heuristically optimum solution: reproduction/selection, crossover, and mutation.

To prevent the solution from being stuck at local minimum, a certain percentage of the

population was replaced at random with a set of new chromosomes.



Chapter 3

Methodology

3.1 Multi-Start Iterated Local Search Based Algorithm

This section begins with a quick overview of the iterated local search algorithm before

diving into the specifics of the proposed algorithm for solving the BTSP.

Iterated Local Search (ILS) is a meta-heuristic that improves the quality of a single

solution iteratively. ILS, according to [18], [19], offers a number of desirable

characteristics, including being simple to apply, resilient, and extremely effective. Initial

solution generation, local search (exploit the solution space), acceptance criteria and

perturbation technique (explore the solution space) are the four primary components of

the ILS. An iterative procedure follows, starting with an initial solution. During each

iteration, the current solution is first subjected to the local search algorithm in order to

find the local optimum solution. The newly acquired locally optimum solution may then

replace the existing solution depending on the acceptance criteria. To escape that locally

optimum solution, a perturbation technique is used on the current solution, resulting in a

perturbed solution. The perturbed solution is used at the current solution for the

following iteration.

Two commonly used acceptance criterion’s are:

5
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• Always replace the existing solution with newly obtained solution. This results in a

random-walk method.

• Replace the existing solution with the new solution if and only if it is better than

the current solution. This results in a improvement type of of method.

ILS has been used to solve a variety of optimization problems and has proven to be effective

to other methods, e.g., [20], [21], [22], [23], [24]. Algorithm 1 contains the pseudo-code for

the basic ILS.

Algorithm 1: Pseudo-code for basic ILS

Input: ILS parameters
Output: Best solution found

T ← Initial Solution();

while Termination condition not satisfied do
T1 ← Local Search(T );
T ← Acceptance Criteria(T, T1, history);
T ← Perturbation Procedure(T );

return best;

3.2 Proposed theory

The proposed multi-start iterated local search (MS-ILS) for the BTSP is an extension of

ILS that restarts the ILS numerous times, each time starting with a new solution provided

by the initial solution generation technique. The multi-start approach was chosen to

avoid unfruitful iterations from consuming time. The search gave better results when

it was restarted with a newly created initial solution. In the following subsections, the

components of the proposed approach are addressed.

3.2.1 Solution Encoding and Fitness

A solution is encoded in the MS-ILS by a linear permutation of nodes, with the first node

always occupying the first place. The redundancy in representation is reduced by limiting
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the first node to the first place. Please keep in mind that none of the MS-ILS components

may change the first node’s location.

Since BTSP is a minimization problem, the fitness function is defined as the reciprocal

of the objective function described in the equation (1.2). Solution with a higher fitness

function value (lower maximum edge cost) is preferred over a solution with a lower fitness

value (higher maximum edge cost).

3.2.2 Initial Solution Generation

The initial solution generation begins with a random selection of two nodes, followed by

an iterative process. Every iteration involves randomly selecting a node and inserting it

between the nodes with the highest cost edge. All the nodes are added into the tour by

continuing this process.

3.2.3 Local Search Procedure

Local search and perturbation processes are critical in the ILS because they govern how

the search behaves. Local search tries to exploit the neighbourhood of the current solution

in order to find a better solution. The suggested MS-ILS local search technique consists of

two heuristics, h1 and h2, each handling two situations. In the first scenario (hence referred

to as case 1), there is only one maximum edge cost, however in the second scenario (hence

referred to as case 2), there might be many edges with maximum edge cost. For case 1, the

two heuristics attempt to minimize the maximum edge cost. For case 2, the two heuristics

attempt to minimize the number of edges with maximum edge cost. As a result, the best

solutions for these two scenarios are determined. Note that the maximum edge cost cannot

be reduced until and unless all the edges with maximum edge cost are replaced, which is

why case 2 is handled differently from case 1.
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3.2.3.1 h1: Insertion between the nodes of maximum edge cost

To reduce the maximum edge cost in case 1, this heuristic inserts a node between the

nodes of maximum edge cost. As part of this heuristic, each node must be tested for

insertion between the nodes with maximum edge cost, with the best of all the results

being accepted. In case 2, the heuristic evaluates each edge with maximum edge cost in

the solution one by one, in the sequence in which they appear. To limit the number edges

with maximum edge cost, each node is put one by one between the nodes of edge under

examination, and the best of all the resultant solutions is accepted. If the number of edges

with maximum edge cost are reduced, this heuristic ends and h2 begins. Otherwise, next

edge with maximum edge cost is considered

3.2.3.2 h2: Maximum cost edge centric 2-opt move

Two edges are deleted from the tour in a 2-opt move and the resultant two paths are linked

through two other edges. After attempting every pair of edges in the tour, the best tour

is obtained. Figure 3.1 shows an example of a 2-opt move. The two red coloured edges

are deleted from the path in this illustration, and the two blue coloured edges are utilised

to reconstruct it. The suggested heuristic is a modified version of the 2-opt move, with

the maximum cost edge always being one of the edges to be eliminated. To reduce the

maximum edge cost in case 1, every other edge must be attempted with the maximum edge

for removal, and two new edges must be placed in their place, according to our heuristic.

Accept the move that results in the greatest reduction in the maximum edge cost. In case

2, the heuristic operates in the same way as heuristic h1, with the control being handed

to h1 after the number of edges with maximum edge cost is reduced. Switching control

between one another as soon as the solution improves, rather than employing h1 and h2

sequentially until no improvement is achieved, produces a better final solution. As a result,

h1 and h2 are used interchangeably.
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(a) Before 2-opt move (b) After 2-opt move

Figure 3.1: Example of 2-opt move

3.2.4 Acceptance Criteria

The chosen acceptance criteria involves comparison of the quality (fitness) of the solution

provided by the local search with the solution generated before this procedure was used.

At all occasions, a solution with better fitness value is accepted. The equal fitness solution

is accepted when the maximum edge cost is valued at multiple edges and the number of

edges with that cost decreases. When all of the previous scenarios fail, the perturbation

technique is used, which may result in a better or poorer fitness solution. The newly

returned solution is used for the search procedure in the next iteration.

3.2.5 Perturbation Procedure

The purpose of the perturbation technique is to transfer the search to undiscovered parts

of the search space by perturbing the current locally optimal solution which would help

provide a changed beginning solution to the local search. In essence, local search strategies

are used for exploitation, whereas perturbation approaches are used for exploration. This

perturbation approach is used if none of the heuristics h1 and h2 are able to enhance the

solution in terms of maximum edge cost and the number of edges with maximum edge cost.

A destroy and repair mechanism is employed as part of this approach. With a probability

Ppert, each node on the tour is removed. All of the removed nodes are iteratively inserted

back into the tour in the same that the initial solution generating technique outlined in

Section 3.2.2. The pseudo-code for the technique to perturb a solution is provided in

Algorithm 2.

Algorithm 3 provides the pseudo-code for the proposed MS-ILS approach for the BTSP.
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Algorithm 2: Pseudo-code for perturbing a solution

Input: A solution T

Output: A perturbed solution T1

Function Perturbation Procedure(T):

foreach node c in tour of T do
Generate a random number 0 ≤ p ≤ 1

if p < Ppert then
Add c to a set of unassigned nodes

else
Copy c to tour of T1

foreach node c in the set of unassigned nodes in some random order do
Follow the procedure described in Section 3.2.2 to insert c into tour of T1

return T1;

Algorithm 3: Pseudo-code for the proposed MS-ILS approach to solve the BTSP

Input: Set of parameters for the MS-ILS and a BTSP instance
Output: Best solution found

F (best) = −∞
for st = 1 to Nrst do

T ← Initial Solution();

while Termination condition not satisfied do

/* Apply heuristic h1 */

T1 ← Apply heuristic h1(T );
if F (T1) > F (T ) then

T ← T1;
else if F (T1) > F (T ) then

if no. of edges with F(T) decreased then
T ← T1;

/* Apply heuristic h2 */

T1 ← Apply heuristic h2(T );
if F (T1) > F (T ) then

T ← T1;
else if F (T1) > F (T ) then

if no. of edges with F(T) decreased then
T ← T1;

/* Dealing with the best solution and local optimum solution */

if F (T ) > F (best) then
best← T ;

else if F (T1) < F (T ) then
T1 ← Perturbation Procedure();

return best;



Chapter 4

Work Done

4.1 Dataset Acquisition

TSPLIB instances each with different number of nodes and coordinates (latitude and

longitude) are downloaded from the standard TSPLIB library1. Each instance consists

of data with different edge types (GEO, EUC 2D, etc). Every one of these instances is

converted to a n × n distance matrix where the distance between any two nodes is an

integer. The diagonal elements in the n× n distance matrix is represented as ∞.

1http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

Figure 4.1: burma14 instance from
the standard TSPLIB library

Figure 4.2: Distance matrix for
burma14 instance

11
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4.2 Choosing the Correct Parameters

The proposed algorithm comprises of three parameters namely, Ppert, Nrst and RUNS

which need to be optimized in order to derive better results. Ppert denotes the probability

with which a node is removed during the perturbation procedure 3.2.5. Nrst represents

the number of times the algorithm is restarted after being stuck in local optimal solution.

RUNS denotes the number of times the algorithm is run on the same instance, each time

with a random seed value.

4.2.1 Choosing Ppert

From Figure 4.3, we can clearly see that both of the TSPLIB instances att48 and pr76

achieve a minimum value of 544.40 and 4543.60 on average when Ppert = 0.2.

Figure 4.3: Parameter Tuning - Perturbation Probability (Ppert)

4.2.2 Choosing Nrst

From Figure 4.4, we can clearly see that both of the TSPLIB instances gr24 and eil76

achieve a minimum value of 108.00 and 29.70 on average when Nrst = 100.
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Figure 4.4: Parameter Tuning - No. of Restarts (Nrst)

4.2.3 Choosing RUNS

From Figure 4.5, we can clearly see that both of the TSPLIB instances swiss42 and

berlin52 achieve a minimum value of 82.00 and 480.20 on average when RUNS = 10.

Figure 4.5: Parameter Tuning - No. of Runs (RUNS)
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4.3 Results on few Test Instances

The proposed MS-ILS technique is run 10 times on each test instance, starting with a

different seed value each time. MS-ILS is written in C++ and runs on a 2.6GHz Core-

i7-10750H Linux machine with 8GB RAM. The following settings are used for all the test

instances: MS-ILS is restarted 100 times, i.e., Nrst = 100, Ppert = 0.2. When the solution

doesn’t improve continuously for 100 iterations, the MS-ILS terminates.

Table 4.1 shows the comparison between the proposed MS-ILS algorithm and already

existing algorithms. From this table, we can clearly see that the proposed MS-ILS

algorithm finds the optimal solution (in average) for all the 15 instances whereas HGA,

HSCS and BST algorithms find the solution for 5, 3 and 10 instances respectively. On

the basis of solution quality, the proposed MS-ILS algorithm is found to be better than

BST, HSCS, and HGA algorithms. Also, on the basis of computational time, the MS-ILS

algorithm is found to be the best and BST the worst.

Table 4.1: Results of Different Algorithms for some Standard TSPLIB
Instances

Instance n BST HSCS HGA MS-ILS(h1 + h2)
Average Time Average Time Average Time Average Time

burma14 14 418.00 742.38 422.18 60.57 418.00 61.80 418.00 0.02
ulysses16 16 1504.00 834.15 1504.00 68.06 1504.00 69.44 1504.00 0.07
gr17 17 282.00 727.00 282.00 59.31 282.00 60.52 282.00 0.03
gr21 21 355.00 826.46 355.00 67.43 355.00 68.80 355.00 0.03
ulysses22 22 1504.00 938.42 1519.04 76.56 1504.00 78.12 1504.00 0.13
fri26 26 93.00 533.36 93.50 43.51 93.50 44.40 93.00 0.04
brazil58 58 2149.00 1264.68 2508.54 103.18 2483.70 105.28 2149.00 0.13
gr96 96 3491.00 2931.54 4098.90 239.17 4098.90 244.04 2807.00 0.36
pr107 107 7053.00 3694.10 7387.40 301.39 7387.40 307.52 7050.00 0.40
bier127 127 7486.00 3765.21 7957.80 307.19 7957.80 313.44 7486.00 0.43
gr137 137 4282.00 4409.57 5153.63 359.76 5102.60 367.08 2132.00 0.86
brg180 180 9000.00 5997.15 9000.00 489.29 9000.00 499.24 3500.00 0.96
d198 198 1511.00 9824.34 1712.40 801.53 1712.40 817.84 1380.00 1.06
gr202 202 2230.00 8996.92 2393.70 734.03 2393.70 748.96 2230.00 0.98
d493 493 2008.00 81359.08 2045.25 6637.80 2025.00 6772.84 2008.00 4.82

Overall 3188.00 8456.29 3423.63 689.92 3415.08 703.95 2536.62 0.69
NBV 10 3 5 15
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Table 4.2: Comparative study of MS-ILS(h1), MS-ILS(h2), MS-ILS(h1 + h2)

Instance n MS-ILS(h1) MS-ILS(h2) MS-ILS(h1 + h2)
Best Worst Average Time Best Worst Average Time Best Worst Average Time

burma14 14 418.00 422.00 418.40 0.02 418.00 418.00 418.00 0.01 418.00 418.00 418.00 0.02
ulysses16 16 1504.00 1504.00 1504.00 0.02 1504.00 1504.00 1504.00 0.01 1504.00 1504.00 1504.00 0.07
gr17 17 282.00 282.00 282.00 0.02 282.00 282.00 282.00 0.01 282.00 282.00 282.00 0.03
gr21 21 355.00 355.00 355.00 0.03 355.00 355.00 355.00 0.02 355.00 355.00 355.00 0.03
ulysses22 22 1504.00 1504.00 1504.00 0.03 1504.00 1504.00 1504.00 0.02 1504.00 1504.00 1504.00 0.13
gr24 24 108.00 137.00 127.90 0.04 108.00 147.00 118.10 0.03 108.00 137.00 112.00 0.04
fri26 26 93.00 98.00 93.90 0.04 93.00 93.00 93.00 0.03 93.00 93.00 93.00 0.04
bayg29 29 111.00 150.00 138.70 0.05 111.00 148.00 125.80 0.03 111.00 127.00 113.20 0.05
bays29 29 154.00 182.00 170.90 0.04 154.00 178.00 163.50 0.03 154.00 168.00 163.80 0.05
dantzig42 42 51.00 69.00 61.10 0.07 56.00 64.00 60.50 0.06 42.00 60.00 50.70 0.08
swiss42 42 95.00 108.00 100.10 0.08 91.00 106.00 100.60 0.05 74.00 100.00 82.00 0.08
att48 48 636.00 841.00 716.90 0.06 519.00 753.00 608.80 0.06 519.00 605.00 552.40 0.10
gr48 48 333.00 405.00 385.90 0.08 340.00 436.00 383.80 0.06 227.00 311.00 255.70 0.11
hk48 48 768.00 959.00 862.40 0.10 534.00 801.00 656.00 0.09 534.00 768.00 591.20 0.11
eil51 51 30.00 32.00 31.60 0.09 27.00 32.00 29.80 0.08 25.00 31.00 26.90 0.14
berlin52 52 501.00 526.00 520.90 0.10 475.00 551.00 510.60 0.06 475.00 523.00 480.20 0.11
brazil58 58 2149.00 2213.00 2155.40 0.11 2149.00 2149.00 2149.00 0.07 2149.00 2149.00 2149.00 0.13
st70 70 48.00 54.00 51.60 0.19 47.00 54.00 51.10 0.12 36.00 51.00 46.70 0.25
eil76 76 30.00 34.00 33.20 0.21 30.00 34.00 32.40 0.14 27.00 33.00 31.10 0.26
pr76 76 5561.00 7447.00 6582.50 0.21 4750.00 6757.00 5744.90 0.15 4750.00 5224.00 5081.80 0.24
gr96 96 2855.00 3408.00 3107.00 0.35 2807.00 3226.00 2986.60 0.22 2807.00 2807.00 2807.00 0.36
rat99 99 74.00 80.00 77.00 0.28 70.00 78.00 75.50 0.21 61.00 75.00 69.00 0.43
kroA100 100 1032.00 1492.00 1293.10 0.23 1053.00 1485.00 1321.60 0.19 634.00 819.00 727.10 0.53
kroB100 100 1042.00 1475.00 1317.70 0.18 985.00 1417.00 1216.90 0.39 530.00 786.00 655.90 0.48
kroC100 100 1144.00 1568.00 1350.80 0.21 1045.00 1481.00 1336.20 0.39 576.00 788.00 709.20 0.47
kroD100 100 1235.00 1528.00 1402.20 0.21 1112.00 1484.00 1307.90 0.27 620.00 954.00 729.60 0.47
kroE100 100 1225.00 1487.00 1401.80 0.27 1027.00 1588.00 1335.50 0.39 630.00 1035.00 775.20 0.45
rd100 100 468.00 563.00 521.10 0.31 454.00 579.00 503.00 0.20 250.00 461.00 315.50 0.42
eil101 101 33.00 36.00 34.20 0.32 33.00 36.00 34.50 0.24 30.00 35.00 33.20 0.38
lin105 105 878.00 1068.00 985.80 0.36 915.00 1085.00 997.50 0.21 176.00 335.00 273.00 0.58
pr107 107 7050.00 7050.00 7050.00 0.25 7050.00 7050.00 7050.00 0.19 7050.00 7050.00 7050.00 0.40
gr120 120 365.00 403.00 385.30 0.46 313.00 417.00 374.90 0.30 220.00 370.00 277.20 0.52
pr124 124 5031.00 6307.00 5591.00 0.43 3302.00 5841.00 4055.90 0.34 3302.00 3680.00 3483.20 0.59
bier127 127 7486.00 7486.00 7486.00 0.42 7486.00 7486.00 7486.00 0.24 7486.00 7486.00 7486.00 0.43
ch130 130 332.00 355.00 345.70 0.46 319.00 372.00 349.90 0.29 238.00 344.00 285.60 0.56
pr136 136 5560.00 6298.00 5930.10 0.53 5469.00 6242.00 5929.30 0.62 2976.00 4005.00 3208.60 0.87
gr137 137 3041.00 4161.00 3676.50 0.55 2132.00 4192.00 3145.10 0.53 2132.00 2132.00 2132.00 0.86
pr144 144 4594.00 5390.00 4789.90 0.66 4350.00 5234.00 4570.60 0.58 2825.00 3009.00 2954.40 0.95
ch150 150 339.00 380.00 363.80 0.57 326.00 381.00 354.20 0.47 240.00 361.00 303.80 0.68
kroA150 150 1300.00 1583.00 1445.30 0.70 1235.00 1561.00 1361.30 0.50 515.00 1275.00 778.20 0.90
kroB150 150 1242.00 1573.00 1401.10 0.53 1075.00 1478.00 1284.70 0.47 543.00 986.00 710.90 1.03
pr152 152 6548.00 7152.00 7022.60 0.62 6374.00 7150.00 6808.10 0.64 5553.00 6799.00 5849.10 0.81
u159 159 2608.00 2773.00 2704.10 0.54 2433.00 2823.00 2659.60 0.47 1844.00 2702.00 2221.30 0.87
si175 175 284.00 289.00 285.80 0.80 284.00 289.00 285.80 0.61 272.00 289.00 283.50 1.24
brg180 180 3500.00 3500.00 3500.00 0.54 3500.00 3500.00 3500.00 0.52 3500.00 3500.00 3500.00 0.96
rat195 195 100.00 112.00 108.40 0.78 102.00 110.00 106.90 0.67 93.00 111.00 104.80 1.10
d198 198 1380.00 1602.00 1506.10 0.85 1380.00 1380.00 1380.00 0.64 1380.00 1380.00 1380.00 1.06
kroA200 200 1392.00 1566.00 1483.50 0.64 1353.00 1592.00 1460.50 0.76 603.00 1092.00 779.60 1.87
kroB200 200 1404.00 1573.00 1486.10 0.77 1353.00 1599.00 1499.80 0.62 593.00 1199.00 907.40 1.64
gr202 202 2230.00 2398.00 2251.10 0.72 2230.00 2250.00 2232.00 0.59 2230.00 2230.00 2230.00 0.98
ts225 225 7159.00 7500.00 7265.00 1.23 7000.00 7500.00 7276.60 0.96 6708.00 7433.00 7035.20 1.62
tsp225 225 178.00 193.00 186.40 1.16 185.00 196.00 190.00 0.92 169.00 192.00 182.00 1.39
pr226 226 7653.00 8050.00 7842.90 0.95 7650.00 8150.00 7772.40 0.81 3250.00 3650.00 3368.30 2.39
gr229 229 4746.00 6833.00 5641.20 1.22 4203.00 6284.00 5411.10 1.01 4027.00 4203.00 4064.40 1.82
gil262 262 106.00 110.00 107.90 1.42 101.00 108.00 105.00 1.55 99.00 109.00 104.10 2.02
pr264 264 4701.00 4975.00 4834.00 1.26 4701.00 5100.00 4859.00 1.01 4701.00 4951.00 4729.60 1.69
a280 280 114.00 120.00 117.20 1.94 116.00 122.00 118.90 1.13 113.00 119.00 115.70 2.14
pr299 299 2259.00 2441.00 2353.10 1.66 2026.00 2401.00 2244.70 2.03 1140.00 2080.00 1503.10 3.74
lin318 318 1774.00 1896.00 1850.90 2.06 1731.00 1902.00 1817.80 1.82 1331.00 1632.00 1368.40 3.81

rd400 400 544.00 565.00 554.30 3.04 533.00 562.00 550.80 2.55 467.00 559.00 528.20 3.86
fl417 417 1159.00 1206.00 1180.90 2.80 1082.00 1182.00 1151.10 2.37 999.00 1100.00 1045.30 4.81
gr431 431 5787.00 7508.00 6858.60 3.70 5800.00 7298.00 6181.00 3.22 4027.00 5100.00 4174.50 5.99
pr439 439 4642.00 5244.00 4926.80 3.63 4555.00 5268.00 4828.40 3.21 2384.00 3094.00 2735.50 6.13
pcb442 442 1803.00 1910.00 1845.60 3.12 1811.00 1903.00 1838.50 2.87 1628.00 1838.00 1179.20 4.75

d493 493 2008.00 2008.00 2008.00 3.70 2008.00 2254.00 2055.70 3.19 2008.00 2008.00 2008.00 4.82
att532 532 1027.00 1088.00 1045.70 5.34 1009.00 1060.00 1035.00 4.46 742.00 1008.00 890.50 8.33
ali535 535 8063.00 8705.00 8416.50 6.16 7742.00 8540.00 8165.20 3.92 3889.00 4507.00 4209.30 12.78

si535 535 292.00 305.00 299.60 4.01 292.00 302.00 297.10 4.25 277.00 305.00 293.00 6.48
pa561 561 72.00 75.00 73.70 4.76 71.00 75.00 72.60 5.94 70.00 73.00 71.90 11.33

u574 574 1151.00 1196.00 1177.30 5.63 1170.00 1214.00 1194.90 4.51 949.00 1189.00 1083.70 10.26
rat575 575 187.00 195.00 191.70 5.89 186.00 196.00 190.10 6.22 188.00 194.00 190.20 8.74
p654 654 3090.00 3195.00 3133.50 6.61 2925.00 3180.00 3106.50 6.43 2745.00 3195.00 2973.00 15.50
d657 657 1466.00 1700.00 1600.10 8.98 1374.00 1715.00 1512.50 6.93 1368.00 1431.00 1380.40 16.64
gr666 666 8429.00 9004.00 8830.80 8.69 9123.00 8932.00 8647.30 7.15 4469.00 4914.00 4531.30 20.51

u724 724 1169.00 1221.00 1195.70 7.89 1145.00 1213.00 1188.50 7.18 1004.00 1220.00 1133.00 17.20
rat783 783 216.00 228.00 222.40 9.87 219.00 227.00 221.70 8.94 217.00 224.00 220.00 18.73
nrw1379 1379 1035.00 1071.00 1059.40 32.07 1045.00 1062.00 1053.20 35.87 1028.00 1070.00 1049.10 66.73

fl1577 1577 970.00 988.00 978.70 49.97 964.00 986.00 978.80 42.47 958.00 988.00 972.40 98.71
d1655 1655 1512.00 1703.00 1587.60 72.66 1511.00 1621.00 1562.30 57.66 1476.00 1568.00 1518.50 121.71
vm1748 1748 8936.00 9288.00 9185.50 64.27 8996.00 9237.00 9138.90 59.71 6820.00 7258.00 7000.30 130.57
u1817 1817 1159.00 1194.00 1182.80 62.75 1177.00 1194.00 1185.90 56.83 1163.00 1198.00 1173.40 105.49
rl1889 1889 7883.00 8064.00 7997.40 68.41 7885.00 8140.00 8024.40 75.94 6797.00 7868.00 7422.80 170.28

Overall 2095.04 2338.50 2221.35 5.77 2017.68 2303.61 2144.84 5.33 1591.55 1814.83 1672.98 11.17
NBV 19 11 8 25 20 13 79 74 80
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(a) BTSP Solution for dantzig42 (b) BTSP Solution for eil51

Figure 4.6: Plots showing the MS-ILS algorithm solutions on various TSPLIB instances

The performance of the three MS-ILS variants, MS-ILS(h1), MS-ILS(h2), and MS-ILS(h1+

h2) is shown in Table 4.2. The first column in this table reflects the instance’s name. The

number of nodes for each instance is reported in the second column (n). The columns

(Best,Worst, Average) give the best, worst and average maximum edge costs over 10

separate runs for each of the three variations of the proposed MS-ILS. The best results

are highlighted in bold to make them stand out. The average of the execution times of

10 distinct runs are reported in the column (Time). The number of occasions on which

the appropriate MS-ILS variant obtains a best value is reported in the last row, labelled

‘NBV ’.

The MS-ILS(h1 + h2) received the best values for the best and average objective function

values in 79 and 80 instances respectively, out of 82. For the best and average objective

function values, the MS-ILS(h2) obtained the best results in 25 and 13 instances

respectively. For the best and average objective function values, the MS-ILS(h1)

obtained the best results in 19 and 11 instances respectively.

The performance of MS-ILS(h2) is better when compared to that of MS-ILS(h1), as seen

from Table 4.3, whereas, MS-ILS(h1 + h2) performs very well.

Figure 4.6 plots the solutions obtained by our MS-ILS(h1+h2) approach for two TSPLIB

instances, viz. dantzig42 and eil51.
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Table 4.3: Wilcoxon signed rank test Result

MS-ILS(h1 + h2) MS-ILS(h2)

NWT/Total W+ W− Z Zc Significant NWT/Total W+ W− Z Zc Significant
MS-ILS(h2) 71/82 2553 3 -7.306 -2.576 Yes MS-ILS(h1) 74/82 2355 0 -5.212 -2.576 Yes
MS-ILS(h1) 74/82 2775 0 -7.475 -2.576 Yes

4.3.1 Wilcoxon signed rank test

Two tailed Wilcoxon signed rank test [25] has been deployed to check whether the

performances of the three MS-ILS variants differ significantly. The significance criteria

were set to 1% (i.e., p − value ≤ 0.01). This test grades the difference between the

normalised values of ’Average’ produced by our method. Table 4.3 shows the results of

this statistical test. The ‘NWT/Total’ in this table refers to the number of TSPLIB

instances without a tie as a percentage of the total number of cases compared. W+

represents the sum of ranks for cases where the top of the table approach

(MS-ILS(h1 + h2)/MS-ILS(h2)) outperforms its competitor on the left side of the table,

whereas W− represents the sum of ranks for cases where the top of the table approach

(MS-ILS(h1 + h2)/MS-ILS(h2)) under performs its competitor on the left side of the

table. Since there are more than thirty instances (NWT > 30), the test statistic Z is

utilized. According to the Wilcoxon signed rank test, the Z value is compared to the

critical value Zc. If Z ≤ Zc, the performance of the two MS-ILS variations under

consideration differs significantly; otherwise, the difference is insignificant. The results of

all three MS-ILS variants (MS-ILS(h1), MS-ILS(h2), and MS-ILS(h1 + h2) are

statistically significant from each other, as shown in Table 4.3.

4.4 Time Complexity Analysis

The average time complexity of the proposed MS-ILS algorithm for solving the BTSP

depends mainly on the two heuristics proposed in 3.2.3. In this section, we attempt to

analyze the average time complexity of the two heuristics separately and validate them

with experimental results.
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4.4.1 Average Time Complexity of Heuristic h1

A tour on k nodes is denoted by Hk={c1, c2, c3, . . . , ck}. Choose a random node r from

the remaining n − k nodes and place it between the nodes with the highest edge cost in

Hk. On k + 1 nodes, replace Hk with the new tour Hk+1, and repeat until a tour Hn

is achieved. This method takes O(n3) time to implement in a simple way. The following

method can decrease the time complexity to O(n2). Let

Max(Hk) = max
1≤i≤k

{l(ci,ci+1)} = l(cp,cp+1) (4.1)

and

Max(Hk − {(cp, cp+1)}) = max
1≤i≤k

{l(ci,ci+1)}, i ̸= p (4.2)

where k + 1 ≡ 1. Because the index p in (4.1) is not guaranteed to be unique, Max(Hk)

might be equivalent to Max(Hk − (cp, cp+1)) and hence, the cost ∆r
i of inserting node

between nodes ci and ci+1 is given by

∆r
i =


max{Max(Hk), l(ci,cr), l(cr,ci+1)}, if i ̸= p

max{Max(Hk − {(cp, cp+1)}), l(ci,cr), l(cr,ci+1)}, if i = p

(4.3)

Figure 4.7: Problem Size vs Average Running Time for Heuristic h1
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Choose q such that ∆r
q = min1≤i≤k ∆

r
i . The new cycle Hk+1 on k + 1 nodes is then

obtained by inserting node r between nodes cq and cq+1 in Hk. The heuristic generates a

Hn tour on n nodes. Given the values Max(Hk) and Max(Hk − {cp, cp+1}) for Hk and

the index q, the corresponding values for Hk+1 may be found in O(1) time. It should be

emphasised that updating other pertinent information every iteration requires O(n) time,

including computation of q. The complexity of the heuristic h1 may thus be validated as

O(n2).

Figure 4.7 shows that the average time complexity from the computational results obtained

is also O(n2).

4.4.2 Average Time Complexity of Heuristic h2

In each 2-opt move, two edges (p1, p2) and (q1, q2) are deleted where p1, p2, q1, q2 are all

distinct, thus creating two sub-tours which are reconnected with edges (p1, q1) and (p2, q2)

in case the replacement reduces the maximum edge length in the tour.

Figure 4.8: Problem Size vs Average Running Time for Heuristic h2

In general, two-opt move incurs O(n2) cost in the worst case as we need to choose two

edges from n edges which is
(
n
2

)
= n(n − 1) ≈ O(n2). In our algorithm, since we choose

the one of the edges to be the maximum edge in the tour, we need to select one edge from



Chapter 4. Work Done 20

the remaining (n − 1) edges, which is O(n). After the two-opt move, updating the edge

with maximum edge cost is O(n). Therefore, the average time complexity of the two-opt

move per iteration is O(n). Since the two-opt move is done n-times for n edges, the overall

average time complexity becomes n ∗O(n) = O(n2).

Figure 4.8 shows that the average time complexity from the computational results obtained

is also O(n2).

A linear, quadratic, and cubic fit has been done to estimate the running time of our

approach as a function of the instance size using the enormous quantity of data obtained

in the tests. Figure 4.9 shows how closely the quadratic fit approximates the running time.

This is consistent with the known experimental findings for the LK-heuristic [26–30] on

the average complexity of O(n2.2).

Figure 4.9: Problem Size vs Average Running Time for the proposed MS-ILS algorithm



Chapter 5

Conclusion and Future Works

5.1 Conclusion

To solve the bottleneck travelling salesman problem (BTSP), a multi-iterated iterated

local search method has been presented. The suggested insertion and modified 2-opt

move based local searches are the key components of this approach. On standard

TSPLIB instances, the proposed heuristic method (viz. MS-ILS(h1 + h2)) performed well

when compared with two other heuristics (viz. MS-ILS(h1) and MS-ILS(h2)).

MS-ILS(h2) performed significantly better than MS-ILS(h1). When compared to other

existing algorithms, MS-ILS(h1 + h2) proved to be the best in terms of both solution and

computational time. The proposed MS-ILS technique is the first meta-heuristic approach

to solve the BTSP and hence will serve as a benchmark for any future meta-heuristic

approaches. Other similar problems, such as the vehicle routing problem (VRP),

maximum travelling salesman problem (MTSP) can be solved using this approach.

As a future work, we intend to build a population-based meta-heuristic method for the

BTSP by combining it with MS-ILS components to enhance the result.

21
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